CAOS: Conformal Aggregation of One-Shot Predictors

1 authors
arXiv:2601.05219v1

Authors

Abstract

One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.

Paper Information

arXiv ID:
2601.05219v1
Published:
Categories:
stat.ML, cs.AI, cs.LG