Latest AI Research

Discover Cutting-Edge
AI Resources & Tools

Explore the latest research papers, models, apps, and projects from arXiv, HuggingFace, and GitHub. Your comprehensive AI navigation hub.

Featured Papers

Curated research papers recommended by our team

View All

Recent Papers

Latest research papers from arXiv

View All

Measuring and Fostering Peace through Machine Learning and Artificial Intelligence

Jan 8, 2026
14 authors

We used machine learning and artificial intelligence: 1) to measure levels of peace in countries from news and social media and 2) to develop on-line tools that promote peace by helping users better understand their own media diet. For news media, we used neural networks to measure levels of peace from text embeddings of on-line news sources. The model, trained on one news media dataset also showed high accuracy when used to analyze a different news dataset. For social media, such as YouTube, we developed other models to measure levels of social dimensions important in peace using word level (GoEmotions) and context level (Large Language Model) methods. To promote peace, we note that 71% of people 20-40 years old daily view most of their news through short videos on social media. Content creators of these videos are biased towards creating videos with emotional activation, making you angry to engage you, to increase clicks. We developed and tested a Chrome extension, MirrorMirror, which provides real-time feedback to YouTube viewers about the peacefulness of the media they are watching. Our long term goal is for MirrorMirror to evolve into an open-source tool for content creators, journalists, researchers, platforms, and individual users to better understand the tone of their media creation and consumption and its effects on viewers. Moving beyond simple engagement metrics, we hope to encourage more respectful, nuanced, and informative communication.

cs.CLcs.CYcs.LG

Learning Latent Action World Models In The Wild

Jan 8, 2026
6 authors

Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.

cs.AIcs.CV

Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data

Jan 8, 2026
1 authors

I propose a novel framework that integrates stochastic differential equations (SDEs) with deep generative models to improve uncertainty quantification in machine learning applications involving structured and temporal data. This approach, termed Stochastic Latent Differential Inference (SLDI), embeds an ItΓ΄ SDE in the latent space of a variational autoencoder, allowing for flexible, continuous-time modeling of uncertainty while preserving a principled mathematical foundation. The drift and diffusion terms of the SDE are parameterized by neural networks, enabling data-driven inference and generalizing classical time series models to handle irregular sampling and complex dynamic structure. A central theoretical contribution is the co-parameterization of the adjoint state with a dedicated neural network, forming a coupled forward-backward system that captures not only latent evolution but also gradient dynamics. I introduce a pathwise-regularized adjoint loss and analyze variance-reduced gradient flows through the lens of stochastic calculus, offering new tools for improving training stability in deep latent SDEs. My paper unifies and extends variational inference, continuous-time generative modeling, and control-theoretic optimization, providing a rigorous foundation for future developments in stochastic probabilistic machine learning.

stat.MLcs.LGecon.EM+1

Featured Blog Posts

Latest insights and tutorials from our team

View All

Best AI Tools & Resources

Discover curated AI tools, models, and applications

Browse by Category

Explore AI research by topic