Discover Cutting-Edge
AI Resources & Tools
Explore the latest research papers, models, apps, and projects from arXiv, HuggingFace, and GitHub. Your comprehensive AI navigation hub.
Featured Papers
Curated research papers recommended by our team
LLaMA: Open and Efficient Foundation Language Models
Meta released LLaMA models (7B-65B parameters) trained on publicly available data. Competitive with GPT-3 while being much smaller and open-source.
"Enabled open-source AI movement"
GPT-4 Technical Report
First multimodal GPT model accepting both text and images. Significant improvements in reasoning, creativity, and safety. Passed bar exam in top 10%.
"Major leap in AI capabilities and multimodal understanding"
Attention Is All You Need
Introduced the Transformer architecture, replacing recurrent networks with self-attention mechanisms. This paper laid the foundation for all modern large language models including GPT, BERT, and beyond.
"Revolutionary architecture that became the foundation of modern NLP"
Recent Papers
Latest research papers from arXiv
Measuring and Fostering Peace through Machine Learning and Artificial Intelligence
We used machine learning and artificial intelligence: 1) to measure levels of peace in countries from news and social media and 2) to develop on-line tools that promote peace by helping users better understand their own media diet. For news media, we used neural networks to measure levels of peace from text embeddings of on-line news sources. The model, trained on one news media dataset also showed high accuracy when used to analyze a different news dataset. For social media, such as YouTube, we developed other models to measure levels of social dimensions important in peace using word level (GoEmotions) and context level (Large Language Model) methods. To promote peace, we note that 71% of people 20-40 years old daily view most of their news through short videos on social media. Content creators of these videos are biased towards creating videos with emotional activation, making you angry to engage you, to increase clicks. We developed and tested a Chrome extension, MirrorMirror, which provides real-time feedback to YouTube viewers about the peacefulness of the media they are watching. Our long term goal is for MirrorMirror to evolve into an open-source tool for content creators, journalists, researchers, platforms, and individual users to better understand the tone of their media creation and consumption and its effects on viewers. Moving beyond simple engagement metrics, we hope to encourage more respectful, nuanced, and informative communication.
Learning Latent Action World Models In The Wild
Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.
Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data
I propose a novel framework that integrates stochastic differential equations (SDEs) with deep generative models to improve uncertainty quantification in machine learning applications involving structured and temporal data. This approach, termed Stochastic Latent Differential Inference (SLDI), embeds an ItΓ΄ SDE in the latent space of a variational autoencoder, allowing for flexible, continuous-time modeling of uncertainty while preserving a principled mathematical foundation. The drift and diffusion terms of the SDE are parameterized by neural networks, enabling data-driven inference and generalizing classical time series models to handle irregular sampling and complex dynamic structure. A central theoretical contribution is the co-parameterization of the adjoint state with a dedicated neural network, forming a coupled forward-backward system that captures not only latent evolution but also gradient dynamics. I introduce a pathwise-regularized adjoint loss and analyze variance-reduced gradient flows through the lens of stochastic calculus, offering new tools for improving training stability in deep latent SDEs. My paper unifies and extends variational inference, continuous-time generative modeling, and control-theoretic optimization, providing a rigorous foundation for future developments in stochastic probabilistic machine learning.
CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
MineNPC-Task: Task Suite for Memory-Aware Minecraft Agents
We present \textsc{MineNPC-Task}, a user-authored benchmark and evaluation harness for testing memory-aware, mixed-initiative LLM agents in open-world \emph{Minecraft}. Rather than relying on synthetic prompts, tasks are elicited from formative and summative co-play with expert players, normalized into parametric templates with explicit preconditions and dependency structure, and paired with machine-checkable validators under a bounded-knowledge policy that forbids out-of-world shortcuts. The harness captures plan/act/memory events-including plan previews, targeted clarifications, memory reads and writes, precondition checks, and repair attempts and reports outcomes relative to the total number of attempted subtasks, derived from in-world evidence. As an initial snapshot, we instantiate the framework with GPT-4o and evaluate \textbf{216} subtasks across \textbf{8} experienced players. We observe recurring breakdown patterns in code execution, inventory/tool handling, referencing, and navigation, alongside recoveries supported by mixed-initiative clarifications and lightweight memory. Participants rated interaction quality and interface usability positively, while highlighting the need for stronger memory persistence across tasks. We release the complete task suite, validators, logs, and harness to support transparent, reproducible evaluation of future memory-aware embodied agents.
Internal Representations as Indicators of Hallucinations in Agent Tool Selection
Large Language Models (LLMs) have shown remarkable capabilities in tool calling and tool usage, but suffer from hallucinations where they choose incorrect tools, provide malformed parameters and exhibit 'tool bypass' behavior by performing simulations and generating outputs instead of invoking specialized tools or external systems. This undermines the reliability of LLM based agents in production systems as it leads to inconsistent results, and bypasses security and audit controls. Such hallucinations in agent tool selection require early detection and error handling. Unlike existing hallucination detection methods that require multiple forward passes or external validation, we present a computationally efficient framework that detects tool-calling hallucinations in real-time by leveraging LLMs' internal representations during the same forward pass used for generation. We evaluate this approach on reasoning tasks across multiple domains, demonstrating strong detection performance (up to 86.4\% accuracy) while maintaining real-time inference capabilities with minimal computational overhead, particularly excelling at detecting parameter-level hallucinations and inappropriate tool selections, critical for reliable agent deployment.
Featured Blog Posts
Latest insights and tutorials from our team
Welcome to AIPOD Blog
Introducing our new blog platform for AI research insights and tutorials
Welcome to AIPOD Blog We're excited to introduce the AIPOD blog - your new destination for AI research insights, tutorials, and industry analysis. What You'll Find Here Our blog will feat...
Best AI Tools & Resources
Discover curated AI tools, models, and applications
Browse by Category
Explore AI research by topic