AI Research Papers

Discover the latest research from arXiv

Total Papers: 3475

Recent Papers

Measuring and Fostering Peace through Machine Learning and Artificial Intelligence

Jan 8, 2026
14 authors

We used machine learning and artificial intelligence: 1) to measure levels of peace in countries from news and social media and 2) to develop on-line tools that promote peace by helping users better understand their own media diet. For news media, we used neural networks to measure levels of peace from text embeddings of on-line news sources. The model, trained on one news media dataset also showed high accuracy when used to analyze a different news dataset. For social media, such as YouTube, we developed other models to measure levels of social dimensions important in peace using word level (GoEmotions) and context level (Large Language Model) methods. To promote peace, we note that 71% of people 20-40 years old daily view most of their news through short videos on social media. Content creators of these videos are biased towards creating videos with emotional activation, making you angry to engage you, to increase clicks. We developed and tested a Chrome extension, MirrorMirror, which provides real-time feedback to YouTube viewers about the peacefulness of the media they are watching. Our long term goal is for MirrorMirror to evolve into an open-source tool for content creators, journalists, researchers, platforms, and individual users to better understand the tone of their media creation and consumption and its effects on viewers. Moving beyond simple engagement metrics, we hope to encourage more respectful, nuanced, and informative communication.

cs.CLcs.CYcs.LG

Learning Latent Action World Models In The Wild

Jan 8, 2026
6 authors

Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.

cs.AIcs.CV

Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data

Jan 8, 2026
1 authors

I propose a novel framework that integrates stochastic differential equations (SDEs) with deep generative models to improve uncertainty quantification in machine learning applications involving structured and temporal data. This approach, termed Stochastic Latent Differential Inference (SLDI), embeds an Itô SDE in the latent space of a variational autoencoder, allowing for flexible, continuous-time modeling of uncertainty while preserving a principled mathematical foundation. The drift and diffusion terms of the SDE are parameterized by neural networks, enabling data-driven inference and generalizing classical time series models to handle irregular sampling and complex dynamic structure. A central theoretical contribution is the co-parameterization of the adjoint state with a dedicated neural network, forming a coupled forward-backward system that captures not only latent evolution but also gradient dynamics. I introduce a pathwise-regularized adjoint loss and analyze variance-reduced gradient flows through the lens of stochastic calculus, offering new tools for improving training stability in deep latent SDEs. My paper unifies and extends variational inference, continuous-time generative modeling, and control-theoretic optimization, providing a rigorous foundation for future developments in stochastic probabilistic machine learning.

stat.MLcs.LGecon.EM+1

An interpretable data-driven approach to optimizing clinical fall risk assessment

Jan 8, 2026
6 authors

In this study, we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective cohort analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models to reweight the JHFRAT scoring weights, while preserving its additive structure and clinical thresholds. Recalibration refers to adjusting item weights so that the resulting score can order encounters more consistently by the study's risk labels, and without changing the tool's form factor or deployment workflow. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). This performance improvement translates to protecting an additional 35 high-risk patients per week across the Johns Hopkins Health System. The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labeling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.

cs.LG

SimuAgent: An LLM-Based Simulink Modeling Assistant Enhanced with Reinforcement Learning

Jan 8, 2026
2 authors

Large language models (LLMs) have revolutionized text-based code automation, but their potential in graph-oriented engineering workflows remains under-explored. We introduce SimuAgent, an LLM-powered modeling and simulation agent tailored for Simulink. SimuAgent replaces verbose XML with a concise, dictionary-style Python representation, dramatically cutting token counts, improving interpretability, and enabling fast, in-process simulation. A lightweight plan-execute architecture, trained in two stages, equips the agent with both low-level tool skills and high-level design reasoning. To tackle sparse rewards in long-horizon tasks, we propose Reflection-GRPO (ReGRPO), which augments Group Relative Policy Optimization (GRPO) with self-reflection traces that supply rich intermediate feedback, accelerating convergence and boosting robustness. Experiments on SimuBench, our newly released benchmark comprising 5300 multi-domain modeling tasks, show that a Qwen2.5-7B model fine-tuned with SimuAgent converges faster and achieves higher modeling accuracy than standard RL baselines, and even surpasses GPT-4o when evaluated with few-shot prompting on the same benchmark. Ablations confirm that the two-stage curriculum and abstract-reconstruct data augmentation further enhance generalization. SimuAgent trains and runs entirely on-premise with modest hardware, delivering a privacy-preserving, cost-effective solution for industrial model-driven engineering. SimuAgent bridges the gap between LLMs and graphical modeling environments, offering a practical solution for AI-assisted engineering design in industrial settings.

cs.AI

Observations and Remedies for Large Language Model Bias in Self-Consuming Performative Loop

Jan 8, 2026
5 authors

The rapid advancement of large language models (LLMs) has led to growing interest in using synthetic data to train future models. However, this creates a self-consuming retraining loop, where models are trained on their own outputs and may cause performance drops and induce emerging biases. In real-world applications, previously deployed LLMs may influence the data they generate, leading to a dynamic system driven by user feedback. For example, if a model continues to underserve users from a group, less query data will be collected from this particular demographic of users. In this study, we introduce the concept of \textbf{S}elf-\textbf{C}onsuming \textbf{P}erformative \textbf{L}oop (\textbf{SCPL}) and investigate the role of synthetic data in shaping bias during these dynamic iterative training processes under controlled performative feedback. This controlled setting is motivated by the inaccessibility of real-world user preference data from dynamic production systems, and enables us to isolate and analyze feedback-driven bias evolution in a principled manner. We focus on two types of loops, including the typical retraining setting and the incremental fine-tuning setting, which is largely underexplored. Through experiments on three real-world tasks, we find that the performative loop increases preference bias and decreases disparate bias. We design a reward-based rejection sampling strategy to mitigate the bias, moving towards more trustworthy self-improving systems.

cs.AIcs.CL

CoV: Chain-of-View Prompting for Spatial Reasoning

Jan 8, 2026
8 authors

Embodied question answering (EQA) in 3D environments often requires collecting context that is distributed across multiple viewpoints and partially occluded. However, most recent vision--language models (VLMs) are constrained to a fixed and finite set of input views, which limits their ability to acquire question-relevant context at inference time and hinders complex spatial reasoning. We propose Chain-of-View (CoV) prompting, a training-free, test-time reasoning framework that transforms a VLM into an active viewpoint reasoner through a coarse-to-fine exploration process. CoV first employs a View Selection agent to filter redundant frames and identify question-aligned anchor views. It then performs fine-grained view adjustment by interleaving iterative reasoning with discrete camera actions, obtaining new observations from the underlying 3D scene representation until sufficient context is gathered or a step budget is reached. We evaluate CoV on OpenEQA across four mainstream VLMs and obtain an average +11.56\% improvement in LLM-Match, with a maximum gain of +13.62\% on Qwen3-VL-Flash. CoV further exhibits test-time scaling: increasing the minimum action budget yields an additional +2.51\% average improvement, peaking at +3.73\% on Gemini-2.5-Flash. On ScanQA and SQA3D, CoV delivers strong performance (e.g., 116 CIDEr / 31.9 EM@1 on ScanQA and 51.1 EM@1 on SQA3D). Overall, these results suggest that question-aligned view selection coupled with open-view search is an effective, model-agnostic strategy for improving spatial reasoning in 3D EQA without additional training.

cs.CVcs.AI

Inside Out: Evolving User-Centric Core Memory Trees for Long-Term Personalized Dialogue Systems

Jan 8, 2026
8 authors

Existing long-term personalized dialogue systems struggle to reconcile unbounded interaction streams with finite context constraints, often succumbing to memory noise accumulation, reasoning degradation, and persona inconsistency. To address these challenges, this paper proposes Inside Out, a framework that utilizes a globally maintained PersonaTree as the carrier of long-term user profiling. By constraining the trunk with an initial schema and updating the branches and leaves, PersonaTree enables controllable growth, achieving memory compression while preserving consistency. Moreover, we train a lightweight MemListener via reinforcement learning with process-based rewards to produce structured, executable, and interpretable {ADD, UPDATE, DELETE, NO_OP} operations, thereby supporting the dynamic evolution of the personalized tree. During response generation, PersonaTree is directly leveraged to enhance outputs in latency-sensitive scenarios; when users require more details, the agentic mode is triggered to introduce details on-demand under the constraints of the PersonaTree. Experiments show that PersonaTree outperforms full-text concatenation and various personalized memory systems in suppressing contextual noise and maintaining persona consistency. Notably, the small MemListener model achieves memory-operation decision performance comparable to, or even surpassing, powerful reasoning models such as DeepSeek-R1-0528 and Gemini-3-Pro.

cs.CL

Learning Mixture Models via Efficient High-dimensional Sparse Fourier Transforms

Jan 8, 2026
4 authors

In this work, we give a ${\rm poly}(d,k)$ time and sample algorithm for efficiently learning the parameters of a mixture of $k$ spherical distributions in $d$ dimensions. Unlike all previous methods, our techniques apply to heavy-tailed distributions and include examples that do not even have finite covariances. Our method succeeds whenever the cluster distributions have a characteristic function with sufficiently heavy tails. Such distributions include the Laplace distribution but crucially exclude Gaussians. All previous methods for learning mixture models relied implicitly or explicitly on the low-degree moments. Even for the case of Laplace distributions, we prove that any such algorithm must use super-polynomially many samples. Our method thus adds to the short list of techniques that bypass the limitations of the method of moments. Somewhat surprisingly, our algorithm does not require any minimum separation between the cluster means. This is in stark contrast to spherical Gaussian mixtures where a minimum $\ell_2$-separation is provably necessary even information-theoretically [Regev and Vijayaraghavan '17]. Our methods compose well with existing techniques and allow obtaining ''best of both worlds" guarantees for mixtures where every component either has a heavy-tailed characteristic function or has a sub-Gaussian tail with a light-tailed characteristic function. Our algorithm is based on a new approach to learning mixture models via efficient high-dimensional sparse Fourier transforms. We believe that this method will find more applications to statistical estimation. As an example, we give an algorithm for consistent robust mean estimation against noise-oblivious adversaries, a model practically motivated by the literature on multiple hypothesis testing. It was formally proposed in a recent Master's thesis by one of the authors, and has already inspired follow-up works.

cs.DScs.LGstat.ML

Safe Continual Reinforcement Learning Methods for Nonstationary Environments. Towards a Survey of the State of the Art

Jan 8, 2026
1 authors

This work provides a state-of-the-art survey of continual safe online reinforcement learning (COSRL) methods. We discuss theoretical aspects, challenges, and open questions in building continual online safe reinforcement learning algorithms. We provide the taxonomy and the details of continual online safe reinforcement learning methods based on the type of safe learning mechanism that takes adaptation to nonstationarity into account. We categorize safety constraints formulation for online reinforcement learning algorithms, and finally, we discuss prospects for creating reliable, safe online learning algorithms. Keywords: safe RL in nonstationary environments, safe continual reinforcement learning under nonstationarity, HM-MDP, NSMDP, POMDP, safe POMDP, constraints for continual learning, safe continual reinforcement learning review, safe continual reinforcement learning survey, safe continual reinforcement learning, safe online learning under distribution shift, safe continual online adaptation, safe reinforcement learning, safe exploration, safe adaptation, constrained Markov decision processes, safe reinforcement learning, partially observable Markov decision process, safe reinforcement learning and hidden Markov decision processes, Safe Online Reinforcement Learning, safe online reinforcement learning, safe online reinforcement learning, safe meta-learning, safe meta-reinforcement learning, safe context-based reinforcement learning, formulating safety constraints for continual learning

cs.LGcs.AI

ROOFS: RObust biOmarker Feature Selection

Jan 8, 2026
7 authors

Feature selection (FS) is essential for biomarker discovery and in the analysis of biomedical datasets. However, challenges such as high-dimensional feature space, low sample size, multicollinearity, and missing values make FS non-trivial. Moreover, FS performances vary across datasets and predictive tasks. We propose roofs, a Python package available at https://gitlab.inria.fr/compo/roofs, designed to help researchers in the choice of FS method adapted to their problem. Roofs benchmarks multiple FS methods on the user's data and generates reports that summarize a comprehensive set of evaluation metrics, including downstream predictive performance estimated using optimism correction, stability, reliability of individual features, and true positive and false positive rates assessed on semi-synthetic data with a simulated outcome. We demonstrate the utility of roofs on data from the PIONeeR clinical trial, aimed at identifying predictors of resistance to anti-PD-(L)1 immunotherapy in lung cancer. The PIONeeR dataset contained 374 multi-source blood and tumor biomarkers from 435 patients. A reduced subset of 214 features was obtained through iterative variance inflation factor pre-filtering. Of the 34 FS methods gathered in roofs, we evaluated 23 in combination with 11 classifiers (253 models in total) and identified a filter based on the union of Benjamini-Hochberg false discovery rate-adjusted p-values from t-test and logistic regression as the optimal approach, outperforming other methods including the widely used LASSO. We conclude that comprehensive benchmarking with roofs has the potential to improve the robustness and reproducibility of FS discoveries and increase the translational value of clinical models.

stat.MLcs.LG

Multi-Scale Local Speculative Decoding for Image Generation

Jan 8, 2026
3 authors

Autoregressive (AR) models have achieved remarkable success in image synthesis, yet their sequential nature imposes significant latency constraints. Speculative Decoding offers a promising avenue for acceleration, but existing approaches are limited by token-level ambiguity and lack of spatial awareness. In this work, we introduce Multi-Scale Local Speculative Decoding (MuLo-SD), a novel framework that combines multi-resolution drafting with spatially informed verification to accelerate AR image generation. Our method leverages a low-resolution drafter paired with learned up-samplers to propose candidate image tokens, which are then verified in parallel by a high-resolution target model. Crucially, we incorporate a local rejection and resampling mechanism, enabling efficient correction of draft errors by focusing on spatial neighborhoods rather than raster-scan resampling after the first rejection. We demonstrate that MuLo-SD achieves substantial speedups - up to $\mathbf{1.7\times}$ - outperforming strong speculative decoding baselines such as EAGLE-2 and LANTERN in terms of acceleration, while maintaining comparable semantic alignment and perceptual quality. These results are validated using GenEval, DPG-Bench, and FID/HPSv2 on the MS-COCO 5k validation split. Extensive ablations highlight the impact of up-sampling design, probability pooling, and local rejection and resampling with neighborhood expansion. Our approach sets a new state-of-the-art in speculative decoding for image synthesis, bridging the gap between efficiency and fidelity.

cs.CV

Distilling the Thought, Watermarking the Answer: A Principle Semantic Guided Watermark for Large Reasoning Models

Jan 8, 2026
9 authors

Reasoning Large Language Models (RLLMs) excelling in complex tasks present unique challenges for digital watermarking, as existing methods often disrupt logical coherence or incur high computational costs. Token-based watermarking techniques can corrupt the reasoning flow by applying pseudo-random biases, while semantic-aware approaches improve quality but introduce significant latency or require auxiliary models. This paper introduces ReasonMark, a novel watermarking framework specifically designed for reasoning-intensive LLMs. Our approach decouples generation into an undisturbed Thinking Phase and a watermarked Answering Phase. We propose a Criticality Score to identify semantically pivotal tokens from the reasoning trace, which are distilled into a Principal Semantic Vector (PSV). The PSV then guides a semantically-adaptive mechanism that modulates watermark strength based on token-PSV alignment, ensuring robustness without compromising logical integrity. Extensive experiments show ReasonMark surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points. These advancements are achieved alongside a 0.34% higher watermark detection AUC and stronger robustness to attacks, all with a negligible increase in latency. This work enables the traceable and trustworthy deployment of reasoning LLMs in real-world applications.

cs.AI

Neural Algorithmic Reasoning for Approximate $k$-Coloring with Recursive Warm Starts

Jan 8, 2026
2 authors

Node coloring is the task of assigning colors to the nodes of a graph such that no two adjacent nodes have the same color, while using as few colors as possible. It is the most widely studied instance of graph coloring and of central importance in graph theory; major results include the Four Color Theorem and work on the Hadwiger-Nelson Problem. As an abstraction of classical combinatorial optimization tasks, such as scheduling and resource allocation, it is also rich in practical applications. Here, we focus on a relaxed version, approximate $k$-coloring, which is the task of assigning at most $k$ colors to the nodes of a graph such that the number of edges whose vertices have the same color is approximately minimized. While classical approaches leverage mathematical programming or SAT solvers, recent studies have explored the use of machine learning. We follow this route and explore the use of graph neural networks (GNNs) for node coloring. We first present an optimized differentiable algorithm that improves a prior approach by Schuetz et al. with orthogonal node feature initialization and a loss function that penalizes conflicting edges more heavily when their endpoints have higher degree; the latter inspired by the classical result that a graph is $k$-colorable if and only if its $k$-core is $k$-colorable. Next, we introduce a lightweight greedy local search algorithm and show that it may be improved by recursively computing a $(k-1)$-coloring to use as a warm start. We then show that applying such recursive warm starts to the GNN approach leads to further improvements. Numerical experiments on a range of different graph structures show that while the local search algorithms perform best on small inputs, the GNN exhibits superior performance at scale. The recursive warm start may be of independent interest beyond graph coloring for local search methods for combinatorial optimization.

math.COcs.LG

Evaluative Fingerprints: Stable and Systematic Differences in LLM Evaluator Behavior

Jan 8, 2026
1 authors

LLM-as-judge systems promise scalable, consistent evaluation. We find the opposite: judges are consistent, but not with each other; they are consistent with themselves. Across 3,240 evaluations (9 judges x 120 unique video x pack items x 3 independent runs), inter-judge agreement is near-zero (Krippendorff's α = 0.042). On two dimensions, judges disagree more than random noise would predict (α < 0). Yet this disagreement isn't chaos; it's structured. A classifier identifies which judge produced an evaluation with 77.1% accuracy from rubric scores alone, rising to 89.9% with disposition features. Within model families, the signal is even stronger: GPT-4.1 and GPT-5.2 are distinguishable with 99.6% accuracy. We call this the reliability paradox: judges cannot agree on what constitutes quality, yet their disagreement patterns are so stable they function as fingerprints. Each judge implements a distinct, stable theory of quality: an "evaluative disposition" that shapes how it interprets any rubric. We characterize these dispositions along multiple axes: harshness/leniency, dimension emphasis, within-judge stability (ICC), and evidence behavior (receipt validity, semantic linkage via NLI, and shotgun index). The implication is stark: LLM judges are not interchangeable instruments measuring a shared construct. They are distinct measurement devices, each encoding its own implicit theory of quality. Averaging their scores produces a synthetic verdict that corresponds to no judge's actual values.

cs.AI

GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts

Jan 8, 2026
7 authors

Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.

cs.AI

Token-Level LLM Collaboration via FusionRoute

Jan 8, 2026
8 authors

Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.

cs.AIcs.CLcs.LG

Multi-Disciplinary Dataset Discovery from Citation-Verified Literature Contexts

Jan 8, 2026
2 authors

Identifying suitable datasets for a research question remains challenging because existing dataset search engines rely heavily on metadata quality and keyword overlap, which often fail to capture the semantic intent of scientific investigation. We introduce a literature-driven framework that discovers datasets from citation contexts in scientific papers, enabling retrieval grounded in actual research use rather than metadata availability. Our approach combines large-scale citation-context extraction, schema-guided dataset recognition with Large Language Models, and provenance-preserving entity resolution. We evaluate the system on eight survey-derived computer science queries and find that it achieves substantially higher recall than Google Dataset Search and DataCite Commons, with normalized recall ranging from an average of 47.47% to a highest value of 81.82%. Beyond recovering gold-standard datasets, the method also surfaces additional datasets not documented in the surveys. Expert assessments across five top-level Fields of Science indicate that a substantial portion of the additional datasets are considered high utility, and some are regarded as novel for the specific topics chosen by the experts. These findings establish citation-context mining as an effective and generalizable paradigm for dataset discovery, particularly in settings where datasets lack sufficient or reliable metadata. To support reproducibility and future extensions, we release our code, evaluation datasets, and results on GitHub (https://github.com/Fireblossom/citation-context-dataset-discovery).

cs.DLcs.CLcs.IR

ECLIPSE: An Evolutionary Computation Library for Instrumentation Prototyping in Scientific Engineering

Jan 8, 2026
20 authors

Designing scientific instrumentation often requires exploring large, highly constrained design spaces using computationally expensive physics simulations. These simulators pose substantial challenges for integrating evolutionary computation (EC) into scientific design workflows. Evolutionary computation typically requires numerous design evaluations, making the integration of slow, low-throughput simulators particularly challenging, as they are optimized for accuracy and ease of use rather than throughput. We present ECLIPSE, an evolutionary computation framework built to interface directly with complex, domain-specific simulation tools while supporting flexible geometric and parametric representations of scientific hardware. ECLIPSE provides a modular architecture consisting of (1) Individuals, which encode hardware designs using domain-aware, physically constrained representations; (2) Evaluators, which prepare simulation inputs, invoke external simulators, and translate the simulator's outputs into fitness measures; and (3) Evolvers, which implement EC algorithms suitable for high-cost, limited-throughput environments. We demonstrate the utility of ECLIPSE across several active space-science applications, including evolved 3D antennas and spacecraft geometries optimized for drag reduction in very low Earth orbit. We further discuss the practical challenges encountered when coupling EC with scientific simulation workflows, including interoperability constraints, parallelization limits, and extreme evaluation costs, and outline ongoing efforts to combat these challenges. ECLIPSE enables interdisciplinary teams of physicists, engineers, and EC researchers to collaboratively explore unconventional designs for scientific hardware while leveraging existing domain-specific simulation software.

cs.NE